```
The Algorithmic Foundations of Adaptive Data Analysis

Lecture 12: The Sparse Vector Technique

Lecturer: Adam Smith

Scribe: Adam Smith
```

1 The Sparse Vector Technique

Recall that in Lecture 5, we saw the "AboveThreshold" algorithm, which is $\log_2(k+1)$ -compressible when run for k rounds:

```
Algorithm 1: AboveThreshold(s, T, q_1, q_2, ...):
1 AllDone \leftarrow FALSE;
2 while not AllDone do
      Accept the next query q_i;
3
4
      a_i \leftarrow q_i(\mathbf{s});
      if a_j < T then
5
       return b_j = \bot;
6
      else
7
          return b_i = \top;
8
          AllDone \leftarrow TRUE ;
9
```

We will see a differentially private version of the algorithm which will allow us to get differentially-private versions of the Ladder, Median and Re-usable Holdout Mechanisms. The changes, highlighted in red, are that we use a noisy threshold \tilde{T} instead of T.

```
Algorithm 2: SparseVector(\mathbf{s}, T, \Delta, \epsilon, q_1, q_2, \ldots):
    Input: q_1, q_2... is a stream of \Delta-sensitive queries
 1 AllDone \leftarrow FALSE;
 2 \tilde{T} = T + Z_0 where Z_0 \sim \text{Lap}(2\Delta/\epsilon);
 з while not AllDone do
         Accept the next query q_i;
 5
         a_i \leftarrow q_i(\mathbf{s});
         \tilde{a}_i \leftarrow a_i + Z_i \text{ where } Z_i \sim \text{Lap}(4\Delta/\epsilon) ;
 6
         if \tilde{a}_i < \tilde{T} then
           return b_j = \bot;
 8
         \mathbf{else}
 9
              return b_j = \top;
10
               AllDone \leftarrow TRUE;
11
```

Theorem 1 The Sparse Vector mechanism is $(\epsilon, 0)$ -differentially private.

Before reading the proof, it may be helpful to work through the following exercise:

Exercise 1 Show that Sparse Vector is not $(\epsilon,0)$ -differentially private (for any $\epsilon < \infty$) if we use the unperturbed threshold T instead of \tilde{T} .

Proof Fix an output of the form $(\bot)^{k-1} \top$ for some $k \in \mathbb{N}$ (we leave the proof for the output $(\bot)^{\infty}$ as an exercise). As in other proofs, we may condition on the analyst's random coins and consider only a deterministic analyst. Thus, when considering a single output sequence $(\bot)^{k-1}\top$, we need only consider a single query sequence $q_1, ..., q_k$ of Δ -sensitive queries. For the remainder of the proof, let $\Delta = 1$ (since we can always rescale query answers and T so that queries are 1-sensitive without changing the output).

We will condition on the values $Z_1 = z_1, ..., Z_{k-1} = z_{k-1}$. With these values fixed, consider the function

$$g(\mathbf{s}) \stackrel{\text{def}}{=} \max_{j=1}^{k-1} q_j(\mathbf{s}) + z_j$$
.

Observe that g is the maximum of 1-sensitive queries, it is itself 1-sensitive. Also, the output $(\bot)^{k-1} \top$ occurs if and only if

$$g(\mathbf{s}) < \tilde{T} \le q_k(\mathbf{s}) + Z_k \qquad (\text{"Event } E_\mathbf{s"})$$
 (1)

Now fix two adjacent data sets \mathbf{s}, \mathbf{s}' . We want to compare the probability of events $E_{\mathbf{s}}$ and $E_{\mathbf{s}'}$. Notice that if we were to first fix Z_k , then the events' probabilities might be very different (for example, one might be zero and the other nonzero).

To do the comparison, we set up a 1-1 correspondence between the randomness of the two variants. For a given pair $T = \tau$, $Z_k = z$ that might occur when the data is s, we will consider a different pair (τ', z') for data s', where

$$\tau \mapsto \tau' \stackrel{\text{def}}{=} \tau + g(\mathbf{s}) - g(\mathbf{s}')$$
$$z \mapsto z' \stackrel{\text{def}}{=} z + g(\mathbf{s}) - g(\mathbf{s}') + g_k(\mathbf{s}') - g_k(\mathbf{s}')$$

We have chosen z' so that the length of the interval in which \tilde{T} must land is the same if we condition on $Z_k = z$ when the data is s or on $Z_k = z'$ when the data is s'. That is, $q_k(\mathbf{s}) + z - g(\mathbf{s}) = q_k(\mathbf{s}') + z' - g(\mathbf{s}')$. So instead of conditioning on the same value for Z_k under both s and s', we will condition on different values. These values are not too far apart, though: $|\tau' - \tau| \le 1$, and $|z' - z| \le 2$. Now,

$$\frac{\Pr(E_{\mathbf{s}})}{\Pr(E_{\mathbf{s}'})} = \frac{\int_{z} \Pr(E_{\mathbf{s}}|Z_{k} = z) f_{Z_{k}}(z) dz}{\int_{z} \Pr(E_{\mathbf{s}'}|Z_{k} = z') f_{Z_{k}}(z') dz'} \leq \sup_{\substack{z \in \mathbb{R} \\ z' = z + g(\mathbf{s}) - g(\mathbf{s}') + q_{k}(\mathbf{s}') - q_{k}(\mathbf{s}')}} \frac{\Pr(E_{\mathbf{s}}|Z_{k} = z)}{\Pr(E_{\mathbf{s}'}|Z_{k} = z')} \cdot \frac{f_{Z_{k}}(z)}{f_{Z_{k}}(z')}.$$

We can bound each of the two ratios in the right-hand expression separately. For the first term, we are comparing the probability that \tilde{T} lands in two different intervals of the same length, which are shifted relative to each other by at most 1. Thus, the first ratio is bounded by $\exp(d_{\diamond}(\operatorname{Lap}(\frac{2}{\epsilon}), 1 + \operatorname{Lap}(\frac{2}{\epsilon}))) = e^{\epsilon/2}$.

In the second ratio, we are comparing the density of Lap $(4/\epsilon)$ at two points within distance 2 of each other. The ratio is thus bounded by $\exp(d_{\diamond}(\operatorname{Lap}(\frac{4}{\epsilon}), 2 + \operatorname{Lap}(\frac{4}{\epsilon}))) = e^{\epsilon/2}$. Combining these, we get that $\frac{\Pr(E_{\mathbf{s}})}{\Pr(E_{\mathbf{s}'})} \leq e^{\epsilon}$, as desired.

What should accuracy mean for this thresholding algorithm? One simple measure is the following: given a run of the algorithm with queries q_1, q_2, \dots and b_1, b_2, \dots , the algorithm's empirical error at a given round is $\max(0, q_i(\mathbf{s}) - T)$ if $b_i = \bot$ and $\max(0, T - q_i(\mathbf{s}))$ if $b_i = \top$. (That is, it is the gap between $q_j(\mathbf{s})$ and T when the wrong decision was made, and 0 otherwise.) When the data are drawn i.i.d from distribution \mathcal{D} , the population error is defined the same way, with $q_i(\mathcal{D})$ replacing $q_i(\mathbf{s})$.

Theorem 2 For all data sets s, all analysts A, and all $\beta > 0$, when run on a sequence of k queries, with probability $1-\beta$ over the coins of the algorithm and A, the sparse vector algorithm has empirical error at most $\alpha = \frac{6\Delta \ln((k+1)/\beta)}{\epsilon}$ at all rounds up to termination.

A direct corollary is that Sparse Vector has expected empirical error at most $O(\Delta \frac{\ln(k)}{\epsilon})$. **Proof** The $|Z_i|$'s are exponential with parameters $2\Delta/\epsilon$ for i=0 and $4\Delta/\epsilon$ for i=1,...k. By Lemma 5 from last lecture, with probability at least $1-\beta$, none of them exceeds its parameter by a factor of more than $\ln((k+1)/\beta)$.

2 Using Sparse Vector

Suppose we want an algorithm that reports several above-threshold queries (for example, suppose we want to shut down the algorithm only after m occurrences of outputting \top). We can simply run m copies of Sparse Vector in sequence. If there are k queries overall, the resulting algorithm will have expected empirical error $O(\frac{\log(m+k)}{n\epsilon}) = O(\frac{\log(k)}{n\epsilon})$ (by a union bound over the m+k Laplace random variables generated during the runs). Of course, the resulting algorithm's privacy/stability parameters will degrade with m: the algorithm will be $m\epsilon$ -differentially private (by composition) and τ -KL stable for $\tau \leq m\epsilon(e^{\epsilon}-1)$.

Where does this leave us with population error? The expected population error of the algorithm will be at most the sum of its expected empirical and generalization errors, that is,

$$O\Big(\underbrace{\frac{\log(k)}{n\epsilon}}_{\substack{\text{empirical}\\ \text{error}}} + \underbrace{\epsilon\sqrt{m}}_{\substack{\text{gen. error}\\ \text{stability}}}\Big), \text{ which is } O\bigg(\frac{m^{1/4}\log^{1/2}k}{n^{1/2}}\bigg) \text{ for } \epsilon = \sqrt{(\log k)/n\sqrt{m}}.$$

For some of our applications, we will also want high-probability bounds on the empirical error. We know that with probability $1-\beta$, the empirical error will be at most $O(\log(k/\beta)/\epsilon)$. With this bound, setting ϵ appropriately ($\epsilon = \sqrt{(\log k/\beta)/n\sqrt{m}}$), we will have both generalization error that is (in expectation) on the order of the empirical error, which is (with high probability) $O\left(\frac{m^{1/4}\log^{1/2}(k/\beta)}{n^{1/2}}\right)$

We can combine this algorithm with Laplace or Gaussian noise to get a distributionally stable version of Guess and Check from Lecture 6.

```
PrivGuessAndCheck(T, \epsilon, m, \Delta, (q_1, g_1), (q_2, g_2), \ldots)

TimesWrong \leftarrow 0
while TimesWrong < m do
Start an instance of SparseVector with threshold T, privacy parameter epsilon, and sensitivity \Delta.

while AboveThreshold has not halted do
Accept the next query (q_i, g_i).
Feed AboveThreshold the query \hat{q}_i(S) = |q_i(S) - g_i|.

if AboveThreshold returns \bot then
Return the answer a_i = g_i
end if
end while
Return the answer a_i = q_i(\mathbf{s}) + Z_i where Z_i \sim \text{Lap}(4\Delta/\epsilon).
TimesWrong \leftarrow TimesWrong + 1
end while
```

Given a sequence of k $\frac{1}{n}$ -sensitive queries and conjectured values, this algorithm will provide answers with error $\eta = O\left(\frac{m^{1/4}\log^{1/2}(k/\beta)}{n^{1/2}}\right)$ until it halts (since using the Laplace mechanism to answer queries for which the conjectured answers are far off at most doubles the privacy/stability parameters, and increases the number of Laplace random variables by at most a factor of 2). In contrast, the compressibility version from Lecture 6 had an error bound of $O(\sqrt{\frac{m \log(kn/m)}{n}})$.

Recall the median mechanism from Lecture 6. We can write down a differentially private version:

We can run the same algorithm using the distributional stable version of Guess and Check. Recall that when the "model" database has size $n' \ge \log(4k)/(2\eta^2)$, the algorithm can make at most $m = n' \log |\mathcal{X}|$ guesses that are off by more than η . Moreover, so long as η is set so that no answer given has *empirical* answer greater than η , the median oracle will never end up with an empty version space, and so will be able to continue answering queries. If each iteration of above threshold is ϵ -differentially private, we get overall (expected) error

```
MedianOracle(q_1,\ldots,q_k)

Let n'=\frac{\ln(4k)}{2\eta^2}. Initialize an instance of \operatorname{PrivGuessAndCheck}(\eta,m) with m=n'\log |\mathcal{X}| and \eta=O\Big(\frac{m^{1/4}\log^{1/2}(k/\beta)}{n^{1/2}}\Big).

Initialize a version space \mathcal{S}_0=\mathcal{X}^{n'}.

for i=1 to k do

Given query q_i, construct a guess g_i=\operatorname{median}\left(\{q_i(S'):S'\in\mathcal{S}_{i-1}\}\right)

Feed the query (q_i,g_i) to \operatorname{PrivGuessAndCheck} and receive answer a_i.

if \hat{a}_i=g_i then \mathcal{S}_i\leftarrow\mathcal{S}_{i-1}

else \mathcal{S}_i\leftarrow\mathcal{S}_{i-1} else \mathcal{S}_i\leftarrow\mathcal{S}_{i-1}\setminus\{S'\in\mathcal{S}_{i-1}:|q_i(S')-a_i|>\eta\} end if Return answer a_i.
```

$$O\left(\frac{m^{1/4}\log^{1/2}(k/\beta)}{n^{1/2}}\right) = O\left(\frac{(\ln(k)\log|\mathcal{X}|)^{1/4}}{\eta^{1/2}} \cdot \frac{\log^{1/2}(k/\beta)}{n^{1/2}}\right)$$

Recall that the expected error has to be no more than η in order for the algorithm to succeed. Setting the expected error to be equal to η above, we obtain that with probability $1 - \beta$, the algorithm answers all queries, and that the expected error is:

$$O(\eta) = O\left(\frac{\log^{1/2}(k/\beta)\log^{1/6}|\mathcal{X}|}{n^{1/3}}\right) \quad \text{or, solving for } n, \quad n = O\left(\frac{\log^{3/2}(k/\beta)\log^{1/2}|\mathcal{X}|}{\eta^3}\right).$$

This last bound should be interpreted as a sample error guarantee: it is a sufficient upper bound on n for the algorithm to give overall expected error η .

Exercise 2 Use the differentially private version of Guess and Check to derive improved versions of the Ladder mechanism and Reusable Holdout (from Lecture 5 and 6, respectively). What bounds can you get on the expected error of each of these algorithms?

3 Notes

The Sparse Vector algorithm is notoriously trickly to analyze, and several incorrect versions appear in the literature. Variants of the algorithm first appeared in [DNR⁺09, RR10]. The simple, general version here is adapted from [HR10]. A survey of some of the incorrect variants appears in Lyu, Su and Li (arXiv 1603.01699 [CR]). The presentation here is inspired by those of Dwork and Roth (2014) and Kifer and Zhang (POPL 2017). The differentially private version of the median mechanism is from [RR10].

References

[DNR⁺09] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the complexity of differentially private data release: efficient algorithms and hardness results. In *STOC*, pages 381–390. ACM, May 31 - June 2 2009.

[HR10] Moritz Hardt and Guy Rothblum. A multiplicative weights mechanism for privacy-preserving data analysis. In *Proc.* 51st Foundations of Computer Science (FOCS), pages 61–70. IEEE, 2010.

[RR10] Aaron Roth and Tim Roughgarden. Interactive privacy via the median mechanism. In Proceedings of the forty-second ACM symposium on Theory of computing, pages 765–774. ACM, 2010.