The Algorithmic Foundations of Adaptive Data Analysis

November 21, 2017

Homework 1

Instructors: Aaron Roth and Adam Smith

1. (Analyst strategies for simple mechanisms)

In this problem, we will revisit and optimize the analyst strategies from Lecture 3.

- the rounded empirical mechanism $OT_{1/n}$, which returns the answer to a statistical query rounded to the nearest multiple of 1/n.
- The Guassian mechanism with parameter σ .
- (a) For each the two mechanisms above, implement the mechanism as a function that takes a data set and a query function and returns the appropriate answer (passing a query is easiest in a language with first-order functions; Python has these).
- (b) Implement and test the attack from Lecture 3 using data drawn uniformly from $\{0,1\}^{k+1}$ for each of the two mechanisms.

Do this for $k \in \{10, 100, 1000\}$ and $n \in \{\frac{k}{10}, \frac{k}{2}, k, 2k, 10k\}$. When you run the experiment, record both the empirical and population error of the mechanism. Run each setting several times (at least 10) to get a sense of the expected performance and its variability.

How does the value of σ affect the accuracy of the Gaussian mechanism? Is there an optimal setting of σ ?

2. (**KL stability and mean-squared error**) Let $M: \mathcal{X}^n \to (\mathcal{X} \to [0,1])$ be a randomized algorithm that outputs a statistical query $\phi: \mathcal{X} \to [0,1]$. In this exercise you will show if M is τ -KL-stable, then its expected squared bias is bounded, namely

$$\mathbb{E}_{\substack{\mathbf{S} \sim \mathcal{D}^n \\ \phi_{\mathbf{S}} \sim M(\mathbf{S})}} \left((\phi_{\mathbf{S}}(\mathbf{S}) - \phi_{\mathbf{S}}(\mathcal{D}))^2 \right) \le O\left(\frac{1}{n} + \tau\right).$$
(1)

(a) Consider the distributions $(\mathbf{S}, M(\mathbf{S}))$ and $(\mathbf{S}', M(\mathbf{S}))$ where \mathbf{S}' is a fresh sample of size n drawn i.i.d. from \mathcal{D} .

Show that $D_{KL}((\mathbf{S}, M(\mathbf{S})) || (\mathbf{S}', M(\mathbf{S})) \leq n\tau$. The divergence $D_{KL}((\mathbf{S}, M(\mathbf{S})) || (\mathbf{S}', M(\mathbf{S}))$ is called the *mutual information* between \mathbf{S} and $M(\mathbf{S})$.

(b) Let A, B be random variables taking values in the same set, with distributions P, Q respectively, such that $D_{KL}(A|B)$ is well-defined and finite. Show that for every real-valued function f, we have

$$\mathbb{E}(f(A)) \le D_{KL}(A||B) + \ln\left(\mathbb{E}\left(e^{f(B)}\right)\right).$$

[Hint: Use Jensen's inequality. For your proof, it's ok to assume that the set in which A, B take values is finite.]

(c) Show that, for every $\lambda \in (0,1)$, for every statistical query ϕ , and for every distribution \mathcal{D} on \mathcal{X} , we have

$$\mathbb{E}(\exp(\frac{\lambda}{2\sigma^2}(\phi(\mathbf{S}) - \phi(\mathcal{D}))^2)) \le \frac{1}{\sqrt{1-\lambda}},$$

where $\sigma^2 = 1/n$. (Note that here ϕ is fixed and independent of **S**.)

To do this, first use the Chernoff bound to show that for every value t > 0, we have $\Pr(|\phi(\mathbf{S}) - \phi(\mathcal{D})| > t) \leq \Pr(|Z| > t)$ where Z is an appropriate Gaussian distribution. Then calculate $\mathbb{E}(\exp(\frac{\lambda}{2\sigma^2}Z^2))$.

- (d) Prove the bound in (1) above by using part (b) to bound the expectation of $f(\mathbf{S}) = \frac{\lambda}{2\sigma^2}(\phi_{\mathbf{S}}(\mathbf{S}) \phi_{\mathbf{S}}(\mathcal{D}))^2$. You will have to choose λ (but many different choices will get the right asymptotics).
- 3. (Differentially Private Algorithms)
 - (a) Show that the exponentnial mechanism seen in class is equivalent to the report noisy max mechanism. [Hint: Consider two outputs a, b. For a fixed input s, what is $\frac{P(a|s)}{P(b|s)}$?]
 - (b) Show that if we did not add noise to T (that is, we set $\tilde{T} = T$), then the Sparse Vector Mechanism would not be $(\epsilon, 0)$ -differentially private for any finite value of ϵ .
 - (c) Show that the following algorithm is (ϵ, δ) -differentially private over any domain \mathcal{X} .

Algorithm 1: Stable Histogam($\mathbf{s}; \epsilon, \delta$)

- 1 for every $x \in \mathcal{X}$ that appears in \mathbf{s} do
- $\tilde{c}_x = \#\{i : x_i = x\} + \text{Lap}(2/\epsilon);$
- 3 Release the set of pairs $\{(x, \tilde{c}_x) : \tilde{c}_x > \tau\}$ where $\tau = 1 + \frac{2\ln(1/\delta)}{\epsilon}$.
- (d) Suppse we modify the stable histogram to only output the set $\{x : \#\{i : x_i = x\} > \tau\}$. How compressible is the stable histogram algorithm as a function of n, $|\mathcal{X}|$ and the cutoff τ ? What happens when \mathcal{X} is infinite?
- 4. (Differentially Private Ladder) Complete Exercise 2 from Lecture 12. It is ok to only do the analysis for the Ladder algorithm.